Noncommutative Polynomials Nonnegative on a Variety Intersect a Convex Set

نویسندگان

  • J. WILLIAM HELTON
  • IGOR KLEP
  • CHRISTOPHER S. NELSON
چکیده

By a result of Helton and McCullough [HM12], open bounded convex free semialgebraic sets are exactly open (matricial) solution sets D◦ L of a linear matrix inequality (LMI) L(X) 0. This paper gives a precise algebraic certificate for a polynomial being nonnegative on a convex semialgebraic set intersect a variety, a so-called “Perfect” Positivstellensatz. For example, given a generic convex free semialgebraic set D◦ L we determine all “(strong sense) defining polynomials” p for D◦ L. Such polynomials must have the form

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The convex Positivstellensatz in a free algebra

Given a monic linear pencil L in g variables, let PL = (PL(n))n∈N where PL(n) := { X ∈ Sn | L(X) 0 } , and Sn is the set of g-tuples of symmetric n × n matrices. Because L is a monic linear pencil, each PL(n) is convex with interior, and conversely it is known that convex bounded noncommutative semialgebraic sets with interior are all of the form PL. The main result of this paper establishes a ...

متن کامل

A Convex Positivstellensatz

We provide a specific representation of convex polynomials nonnegative on a convex (not necessarily compact) basic closed semi-algebraic set K ⊂ Rn. Namely, we prove that almost all of them belong to a specific subset of the quadratic module generated by the concave polynomials that define K. In particular, almost all nonnegative convex polynomials are sums of squares. Mathematics Subject Class...

متن کامل

Representation of nonnegative convex polyno- mials

We provide a specific representation of convex polynomials nonnegative on a convex (not necessarily compact) basic closed semi-algebraic set K ⊂ R. Namely, they belong to a specific subset of the quadratic module generated by the concave polynomials that define K. Mathematics Subject Classification (2000). Primary 14P10; Secondary 11E25 12D15 90C25.

متن کامل

ar X iv : 0 80 1 . 37 54 v 2 [ m at h . A G ] 9 J ul 2 00 8 Representation of nonnegative convex polyno - mials

We provide a specific representation of convex polynomials nonnegative on a convex (not necessarily compact) basic closed semi-algebraic set K ⊂ Rn. Namely, they belong to a specific subset of the quadratic module generated by the concave polynomials that define K. Mathematics Subject Classification (2000). Primary 14P10; Secondary 11E25 12D15 90C25.

متن کامل

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013